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Abstract  

The shapes of Bragg reflections in Ato, A20 space, 
resulting from the diffraction of monochromated 
neutrons from a small single crystal, c, are related, 
by means of a graphical or diagram approach rather 
than the more usual analytical treatment, to the 
various components of the experimental arrange- 
ment, namely an extended-face monochromator crys- 
tal, M, its mosaic spread and the interaction of the 
wavelength dispersions of M and of c. The last com- 
ponent contributes significant variation in shape 
with change in 0c, or, more generally, in t=  
(tan0c)/(tan0M). The present approach gives a 
clearer appreciation of the r61es of the various com- 
ponents than occurred in an earlier treatment 
[Mathieson (1985). Acta Cryst. A41, 309-316] and 
so has heuristic value as an aid in obtaining a 
proper understanding of the interaction between 
source/monochromator crystal/specimen crystal and 
also in estimating experimental parameters for 
modelling reflections and defining truncation limits. 
The graphical approach in Ato, A20 space can assist 
in the investigation of special features of Bragg reflec- 
tions. 

Introduct ion  

For the measurement, with neutrons or X-rays, of a 
set of Bragg reflections from a small single-crystal 
specimen, one feature is basic in order to establish 
physically significant estimates of structure factors. 
The regions in a diffraction space* within which the 
integrated intensity for each reflection is measured 
must be exactly equivalent, i.e. truncated identically. 

The appropriate region for each reflection, or, in 
general terms, its 'shape', corresponding to this 
truncation condition, is determined by the com- 
ponents associated with the particular experimental 
arrangement. Whether one is dealing with the shape 
in two (or three) dimensions or with the projected 
shape, i.e. profile in one dimension (e.g. Mathieson 

* For the intercomparison of Bragg reflections differing in Bragg 
angle, one should recognize the distinction between At,,, A20 local 
angular space and reciprocal space (Mathieson & Stevenson, 1985). 
'Diffraction space' is used as a general term encompassing both. 

& Stevenson, 1986), one requires to be able to define 
outer limits (box-shaped or elliptical in 2D, scan 
range and aperture size, for a given scan mode, in 
1D) within which the estimation of integrated 
intensity is carried out. For the case involving only a 
source and a small single-crystal specimen, c, 
decisions on these matters are, at least superficially, 
relatively clear cut [e.g. Mathieson (1982, 1984) for 
2D; Alexander & Smith (1962) for 1D]. With the 
incorporation of a monochromator crystal, M, and 
hence the interaction of the dispersions of two crystals 
(and their probable difference in physical size), the 
situation becomes more complex. Particularly is this 
the case for neutrons where there are usually no 
wavelength-identifying features, such as the a~,2 
doublet with characteristic X-rays. 

In these latter circumstances, one may base 
decisions concerning the shape of the outer limit 
figure on purely ad hoc procedures without attempt- 
ing to determine the appropriate component param- 
eters (e.g. Spencer & Kossiakoff, 1980; Sj61in & 
Wlodawer, 1981). However, there are limitations to 
this approach since, with increasing Bragg angle 0c 
of the specimen crystal, reflections tend to increase 
in size and also become intrinsically weaker, with the 
result that outer boundaries are progressively more 
difficult to ascertain. The alternative is to base 
decisions concerning shape on a theoretical model. 
It is, however, essential that the theoretical model 
should be physically realistic, and can be identified as 
such, and that its predictive capability is authentically 
effective over the full working range of 0c. 

The earlier approaches to theoretical modelling of 
neutron reflections involved analytical methods (e.g. 
Willis, 1960; Werner, 1971). The shape for each reflec- 
tion could, in principle, be calculated using com- 
ponent values estimated from independent experi- 
mental measurements. Since all components are 
treated together in a general formula, it is not easy 
to recognize how the various physical factors interact 
or to visualize how the various components contribute 
to the 'shape', nor conversely how to nominate 
specific regions of Oc which are sensitive in relation 
to particular component parameters, although Dachs 
(1978) offers interpretations which, from the present 
analysis, appear more specific than is warranted. In 
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fact, while limited tests have been applied to selected 
one-dimensional aspects of Bragg reflections 
(Pantazatos & Werner, 1973; Sequeira, 1974), a full- 
scale 2D comparison of theoretical distributions with 
the corresponding experimental equivalents, using 
this procedure, does not appear to have been 
attempted and so verification of the overall effective- 
ness of the analytical approach remains to be estab- 
lished. In addition, the analytical approach generally 
requires simplifying assumptions concerning the 
functional form of components to allow its use. 

An alternative approach to the derivation of the 
shapes of Bragg reflections has been taken, indepen- 
dently, by Mathieson (1982) and by Schoenborn 
(1983). This recognizes that the reflection shape 
results from convolution of the distributions associ- 
ated with the various components. This 'diagram' or 
graphical approach involves recognition of the loci 
of the various components in Ato, A20 t°/space, iden- 
tification of the individual distributions and, where 
relevant, of their functional change with 0,. Because 
there is a relatively direct connection of component 
loci with reflection shape in Ato, A20 ~'1 space, it 
should be feasible to use a selected sample group of 
reflections to yield the basic parameters with which 
the whole set of reflections within the working range 
of 0,. can be modelled, without recourse to additional 
independent (external) measurements. 

The current investigation started from a study of 
the neutron single-crystal measurements by Sequeira 
(1974), especially those presented in his Fig. 2, to 
explore the capability of the 'diagram approach'  for 
extracting suitable parameter measures, based on the 
modelling presented in Mathieson (1985a), hereafter 
referred to as M85. It became evident that investiga- 
tion in greater detail than that given in M85, which 
was directed at the case of X-rays, would be of value 
in clarifying the physical aspects of the roles of the 
various components. Such information could be of 
considerable value in applications to real-life 
examples in neutron diffraction, not merely for struc- 
ture-factor measurement but also for the closer study 
of special features in Bragg reflection shapes, for 
example in relation to Kikuchi (absorption) lines (see 
Iida & Kohra, 1979; Wilkins, 1983). 

M_ M+. The source is assumed to be relatively distant 
from M. It is assumed that M consists of crystallites 
all of an exact spacing d, and that the central beam 
from the source, of wavelength ;to, incident on the 
centre of M and reaching c, "s diffracted from M at 
a Bragg angle 0M. To ensure that the basic physical 
features are properly identified and their effect 
demonstrated, the complication associated with 
depth penetration into M is not introduced here. To 
avoid confusion liable to arise from use of Gaussian 
distributions for more than one component and so 
assist in identifying the role of the mosaic spread of 
M in relation to the 'shape' of the Bragg reflection, 
the mosaic spread is taken as triangular, the distribu- 
tion being given by 

~(a)= l - la l / IaLI  forlAl<lAd 

--o for lal> lad. 

From each point on M, one may visualize an 'accep- 
tor' fan of rays pointing back towards the region of 
the source. The 'acceptor'  fans from the outer illumi- 
nated limits of M, namely M+ and M_, and from the 
central point, Mo, are shown in Fig. 1. Each ray of 
a fan is identified in the inserts in the figure with the 
corresponding value of A which gives rise to the ray 
and also of the associated differential wavelength, 
zaA,, deviant from ;t0. The source is assumed to emit 
all wavelengths within the band transmitted by the 
system, uniformly in respect of wavelength and 
emissivity along the vertical axis - so these are iden- 
tified as square-wave distributions. 

Since the angle OM is defined as positive (Allison 
& Williams, 1930), it is the negative region of w,. 
which will mainly concern us, that wEich encom- 
passes the so-called 'parallel '  configuration. To avoid 

,'9 2 0 c 

~'~ 1 " ; 2 ~ L  _ 13L ~ . ~  

. . . . .  - 

Basic features of the model 

To explore the relation of the components and the 
resultant 'shapes',  the following model is envisaged, 
essential features being given in Fig. 1. The specimen 
crystal, c, is assumed small, effectively a point. The 
monochromator crystal, M, an extended-face planar 
crystal diffracting essentially in the symmetrical 
mode, is assumed large relative to c but, initially, 
small relative to the source, tr, so that one is concerned 
essentially only with angles of incidence on M. The 
monochromator crystal is restricted in length, 

Fig. 1. The arrangement of source, tr, monochromator crystal, M, 
and specimen crystal, c, in the model treated. M 0 is the central 
point of M while M_, M÷ are the limit points which subtend 
the aperture angle +i l l  at c. The beams extending from specific 
points on M back to the source are referred to as 'acceptor fans'. 
The beams from the source incident on M_, M0, M+ and 
diffracted to c are identified in the insets with specific values of 
the mosaic distribution A and their corresponding wavelength 
deviations from Ao, AA. Each beam from a point on M going 
to c has a certain wavelength band composition which changes 
with location on M. 
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the con fus ion  o f  increas ing  negat ive  angles,  we will 
des ignate  the angle  (-) to~ (see M85). 

Wavelength dispersion in Ato, A 2 0  (°) space for A = 0 ° 

In this sect ion,  we deal  wi th  the s i tua t ion  for zero 
mosa ic  spread,  i.e. `4 = 0, since this a l lows us to estab- 
lish wave leng th  references  co r r e spond ing  to sym- 
metr ical  ref lect ion f rom the surface of  M and  ident i fy  
the locus o f  the source  c o m p o n e n t .  Fig. 2 presents  
the basic  features  in ,4to, A20 ~°~ space in re la t ion  to 
diff ract ion f rom c. The  or igin O co r re sponds  to the 
central  beam in Fig. 1, i nc iden t  on and  symmet r i ca l ly  
diffracted to c f rom the centre of  M, Mo, its 
wave leng th  be ing  ;to. O '  (at - / 3£ , - / 3 t . )  co r r e sponds  
to the beam symmet r ica l ly  diffracted f rom M÷ with 
a scat ter ing angle  2 0 ~ + 2 / 3 £  and  o f  dev ian t  
wavelength ,  `4A+2, while  O" (at +/3L, +/3£) corre- 
sponds  to the equ iva len t  beam for M_,  20M-2 /3L ,  
o f  dev ian t  wavelength ,  `4A_2. These  define the poin ts  
O',  O and  O" for  0, = 0 ° (see Math ieson ,  1985b). The  
l ine O ' O O "  is at 45 ° to bo th  `4to and  ,420 ~°~ axes. The  
loci o f  ,4A÷2 and  o f  ,4A-2 are represented  by Z'+ O ' Z "  
and  Z'_ O"Z~ respect ively,  l ines which  are para l le l  to 
one  a n o t h e r  at a s lope of  a r c t an (1 /2 )  to the ,420 C°~ 

A(o 

, .  ' f f ' B  " A 2 0 ( o )  

Fig. 2. The variation of wavelength dispersion with t (= 
tan 0,/tan 0M) in Ato, A20 (°) space for the case of zero mosaic 
spread, A = 0 °. The wavelength band incident on Mo is AA+ 2- 
;t o - A;t_2, ;to corresponding to the central beam incident on and 
diffracted from Mo while AA÷2 and AA_2 identify the wavelength 
deviants from Ao which are diffracted symmetrically from one 
end, M.,  and the other, M_, respectively (see Fig. 1). This 
defines the points O' and O", the line O'OO" being at 45 ° to 
both the Ato and the A2to t°~ axes. Z" O'Z'_ and Z'_ O"Z~ corre- 
spond to the loci of A;t+ 2 and AA_2 respectively; they lie at a 
slope of arctan (1/2) to the +d20 (°) axis. As 0, changes from 
zero to increasing (-)to o A;t+2 moves along O'Z',  and AA_2 
moves along O"Z~, ao remaining stationary at O' and O". So 
the locus of the wavelength band, A;t+2 - )t o-  A;t_2, corresponds 
to a straight line, its limits following the lines Z" O'X'_ and 
Z tr t t  t t  • • i tt _ O Z+ so that it p~vots around O. L OL represents one such 

(o) position of the wavelength band in Am, A20 space. The lines 
Z" O'Z L (and Z'_' O"Z'~) are linearly scaled in t (for A = 0°). 
They intersect the Am axis at A' (and A") where t =-0.5 and 
the A20 (°) axis at B' (and B") where t = -1.0. The segment O'Z L 
(and O"Z") corresponds to the negative region of t which 
encompasses the 'parallel' arrangement of c and M while Z~. O' 
(and Z~ O") corresponds to the positive region of t which 
encompasses the 'antiparallel' arrangement of c and M. 

axis. For  0c = 0 °, d i spers ion  due to c is zero,  so the 
' shape '  co r r e sponds  to the l ine O 'OO" .  As 0c changes  
f rom zero to increas ing  (-) to~ values,  ,4A+2 moves  
f rom O'  a long  O'Z'_ by an  a m o u n t  p r o p o r t i o n a l  to 
t( = tan  Oc/tan OM) and  `4A-2 moves  f rom O" a long  
O"Z'_, also p r o p o r t i o n a l  to t, )to r ema in ing  s t a t ionary  
at O. The  locus o f  the wave leng th  band ,  A A + 2 - A o -  
`4A_2, the re fore  co r re sponds  to a s t ra ight  line, its 
l imits fo l lowing  the l ines Z'+ O'Z'_ and  Z"_ O"Z'~ so 
that  it pivots  abou t  the or igin O. 

By slight modi f i ca t ion  of  equa t ions  (1) and  (2) in 
M85, we ob ta in  

(-)`4to = k ' ( /3 ) [ t  + 1] 

( - ) , 4 2 0  (0)= k'(/3 )[2t  + 1] 

( l a )  

(2a)  

where t = tan  0c/ tan  0M and  k'(/3) = (Ah~/Ao) tan  0M. 
Sign conven t ions  are based  on  All ison & Wil l iams  
(1930) and  the t e rmino logy  fol lows Ma th i e son  (1983). 
Rela t ions  ( l a )  and  (2a)  ensure  tha t  the l ines Z'+ O'Z'_ 
and  Z"_ ...n"7"._.+ are linearly scaled in t. As no ted  above ,  
O'  is the reference or ig in  o f  Z "  O ' Z "  and  O" of  
Z"_ n,,7, ,  ...._.+ where  t = 0 ( #c = 0°). Z'+ O 'Z '  intersects  the 
Ato axis at A'  and  Z"  O"Z~ at A" where  t = - 0 . 5  and  
the A20 (°) axis at B' and  B" where  t = - 1 . 0 .  So the 
locus of  the wave leng th  b a n d  (for A = 0 °) is A'OA"  
for  t = - 0 . 5  and  B'OB" for  t = - 1 . 0 .  L'OL" represents  
a general  pos i t ion  of  the wave leng th  band .  

The segment  O'Z'_ ( and  O"Z")  cor responds  to the 
negat ive  region of  t wh ich  encompasses  the 'pa ra l le l '  
a r r angemen t  o f  crystals c and  M while  the segment  
Z'+O' (and  Z~_ O") co r r e sponds  to the posi t ive  region 
of  t which  encompasses  the ' an t ipa ra l l e l '  a r r a n g e m e n t  
of  c and  M. The  d is t inc t ion  be tween the m a g n i t u d e  
of  the d i spers ion  in the two regions is i nd ica ted  by 
c o m p a r i n g  L'_ OL"_ and  L" OL~ at t = - 1 . 5  and  +1 .5  
respectively.  In respect  o f  Fig. 2, wavelengths  which  
are posi t ive  dev ian t  f rom )to are to the right o f  O ' O O "  
while  negat ive  dev ian t  wavelengths  are to the left. 

To demons t r a t e  more  specif ical ly how the A com- 
p o n e n t  ( for  A = 0 °) changes  in magn i tude  and  or ienta-  
t ion in AoJ, A2O (°) space,  Fig. 3 focuses on the vari- 
a t ion  in the n e i g h b o u r h o o d  of  the 'para l le l '  region in 
0.25 steps f rom t = 0 to - 1 . 0  and  0.5 steps to - 2 . 0 .  

Inclusion of  the mosaic-spread component of  the 
monochromator crystal 

The beams  f rom the source,  inc iden t  on M_ ,  Mo, M÷ 
and diffracted to c, c o r r e s p o n d  to cer ta in  specific 
values o f  the mosa ic  spread  d is t r ibut ion ,  A, and the i r  

/ / i 

O0 - ( ~  -05 -07S -10 -15 -20  

Fig. 3. A more specific demonstration of how the A component 
(for/t = 0 °) changes in magnitude and orientation in &o, A20 (°) 
space, with particular reference to the 'parallel' region for t = 0 
to t =-2 .0  in steps of 0.25. 
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associated wavelength deviation from ;to, A;t,, as 
identified in Fig. 1. So each beam from a point on M 
passing to c has a certain wavelength band composi- 
tion. This composition changes with position on M 
and so with /3. These multi-wavelength beams are 
incident on c and, as c rotates (to), each component 
wavelength interacts with c and is dispersed accord- 
ing to its wavelength. 

For any given value of /3[= AOM(/3)=(A;t~/;to) 
x tan 0M], we obtain for any A;t~ the relationships 

Ato=k ' ( /3 )[ (A; t , /A; t t3 ) t+l  ] (lb) 

A20(°~=k'( /3)[2(A;t , /A;t t3) t+ l]. (2b) 

AA~ is the fixed value for any/3 when za = 0 ° while 
Ahi corresponds to any general value within the 
wavelength band. The magnitude of AAi/AA~, i.e. its 
extent in z3to, A20 (°~ space, is dependent on the value 
of t. For each value of/3, ( lb) and (2b) define a line 
in Zho, A20 (°~ space which is the locus of t and lies 
at a slope of arctan (1/2) to the + a 2 0  (°~ axis. 

The relationships in (1 b) and (2b) cannot be depic- 
ted conveniently in a single diagram but require a 
series of diagrams to demonstrate the functional 
dependence on t. Fig. 4 depicts this for t = 0 to -1 .0  
in steps of -0.25 and then to -2 .0  in steps of -0.5,  
i.e. essentially in the 'parallel' region. For the purposes 

t= 0.0 -0.25 -0.50 

,v,+)-~,,~L 
A~ 

-0.75 -1.00 

A 

t= -1.50 ~ ~L +pL 

.-'"~"" t= -2.00 

Fig. 4. Demonstration of the variation of the 'shape' of Bragg 
reflections with change in t in the 'parallel' region from t = 0 to 
t = - 2 . 0 .  Specific values of  M, /1A and A are identified for 
t = - 0 . 5 ,  -1 .0  and -1.5;  their location in the other diagrams 
can be deduced. In this case, the mosaic spread of M (triangular 
in distribution) is assumed large enough to 'fill' the aperture 
+/3L at c set by the physical dimensions of M. 

of demonstration, we assume a largish mosaic spread 
of M capable of 'filling' the aperture +/3L at c set by 
the physical dimensions of M. The source is assumed 
capable of 'filling' all 'acceptor fans' incident on M 
(see Fig. 1). The triangular mosaic spread is indicated 
by the dashed lines in Fig. 4. 

Certain observations on features in Fig. 4 are of 
interest. 

(a) From the fixed points, O' and O" (see 
Mathieson, 1985b), lines extend, of length propor- 
tional to t, both being at a slope arctan (1/2) to the 
+A20 (°~ axis, one from O' going mainly in the positive 
direction, the other from O" going mainly in the 
negative direction. These two lines constitute the 
lower and upper bounds respectively of the 'shape' 
of the Bragg reflection in respect of the model treated 
here. 

(b) The mosaic spread of the monochromator crys- 
tal/.1. (A) _ depicted as a dashed triangular distribution 
in Fig. 4 (visualized as intensity normal to the plane 
of the diagram) - extends parallel to these reference 
lines symmetrically about A = 0 °, the spread being 
proportional to t. 

(c) The locus through any given wavelength, A, 
(say), lies at a slope of 45 ° to the Ato and A20 t°~ axes. 

(d) The emissivity distribution, l ( y ) ,  of cr is the 
distribution along the line of A =0  ° and therefore 
with change of t rotates about O as shown in Fig. 3. 

(e) Except in the special case of t = - l . 0  (the 
'parallel' condition), the intensity distribution 
parallel to za20 at any value of A0 is not a scaled 
version of that through zato =0  ° (cf. Werner, 1971). 
This difference is less obvious when Gaussian func- 
tions are used for the source o- and the mosaic dis- 
tribution/x. 

Consider the situation where the mosaic spread of 
M is very much smaller than that used above but still 
significantly different from 'zero' mosaic spread. Fig. 
5 shows this for the series of t values to indicate how 
the shape rotates, first contracting 'vertically' and then 
expanding 'horizontally' with increase in t. One may 
note by inspection of Fig. 5 that, for this situation, 
the values of the width of the reflection through the 
peak centre parallel to A20, ~ws,* at t =--0.50 and 
at t = - 1 . 0  can provide first estimates at least of the 
dimensions of the two components, mosaic spread 
and the activated length of the monochromator. Note 
also that, in these circumstances, the width of the 1D 
profile parallel to Ato, Crws at t = - 1 " 0  is essentially 
the same size as 8ws at t = -0 .50 .  Here the relative 
angular sizes of ~ to the aperture 13L as judged at 
t=  -0.50 and -1 .0  is 0.20 to 0.9. If, for illustration, 
one uses Gaussian distributions for /z and /3 with 

* To avoid confusion with symbols (/x, or, A, ~5) used previously 
(e.g. Mathieson & Stevenson, 1986), the symbols, ~5, tr, used by 
Werner (1971) and Sequeira (1974) for the width parallel to /120 
of the Bragg reflection and the 1D 'counter' profile width respec- 
tively are subscripted WS. 
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such relative half-widths to calculate the resultant  2D 
Gaussian shape and derive theoretical  estimates of  
3ws and O'ws over the range of  t, there is close accord 
with the theoretical estimates by Sequeira using Wer- 
ner's analyt ical  approach  in Figs. 2 and 3 of  Sequeira 
(1974). Note that  we are compar ing the theoretical 
curve derived from Sequeira with the theoretical curve 
derived from the present approach.  One may deduce 
from the closeness of  fit between the two theoretical  
curves that,  in Sequeira 's  analytical  modell ing,  only 
these two components  were of  significant magni tude;  
all others were of  minor  consequence.  

So far, we have assumed a source of  radiat ion 
which can 'fill' the acceptance capabil i ty of  the mono-  
chromator  crystal. Let us now revert to the large 
mosaic spread as in Fig. 3 but suppose the source 
t runcated in size so that  only those beams fit~2 on 
either side of  parallel ism to the central beam (see Fig. 
1) can excite diffraction. This would mean (see Fig. 
1) that  M .  is restricted to the wavelength range Ao 
to AA+2, Mo to AA+ through )to to AA_ and M_ to 
A)t_ 2 to )t o. With this combinat ion,  a rather  different 
series of  shapes results (Fig. 6) from that  in Fig. 5. 

Different selections of  restrictions on the source 
would lead to other sequences of  shapes (e.g. 
Stevenson, 1988). 

For i l lustration of  the 'd iagram'  approach ,  we can 
invoke specific severe restrictions of  interest in terms 
of  the physical situation. Thus, if we imagine a restric- 
tion to only those beams parallel to the central beam, 
the resultant series of  shapes would be such that  the 
'parallel '  condi t ion  occurs at t = - 2 - 0  [see ( l b )  and 
(2b), which correspond to the condi t ion A = 0 °] and 
not at t = -1 .0 .  In that case, the 'shapes '  are lines (cf. 
Fig. 3) because they correspond to a point  source, in 
this case at infinity. So it is evident that the 'min imum 
condi t ion can occur at points other than t = - 1  (cf. 
Willis, 1960; Mathieson,  1988). 

C= 0"0 -0.25 -050 -075 -1'00 

(" : -1.2S -1.50 -175 - 2 0  

Fig. 5. Demonstration of the variation of shape where the mosaic 
distribution is smaller than that in Fig. 4. One may note that the 
width ( = 3ws) of the reflection at t = -0.50 is the same as the 
height (=O'ws) at t= - l .0 ,  and also that the slice width at 
t = - l . 0  is a measure of the size of the effective source. Hence, 
in such a case where the mosaic spread of M and the 'size' of 
the effective source are the main components, one can derive 
essential parameters to model all reflections from experimental 
estimates of reflections at t = -0.50 and -1-0. 

If one considers the case where the sou rce /mono-  
chromator  and monoc h r oma t o r / spe c i me n  distances 
are equal, then the result would correspond to the 
central wavelength being A0 with a spread of  deviant  
wavelengths on either side. Under  these circum- 
stances, for profile measurement ,  an to/0 (s = 1) scan 
mode would be appropria te ,  with the detector  aper- 
ture adjusted according to the value of  t. 

Combina t ion  of  restrictions on the source size with 
the influence of  the mosaic spread of  M will corre- 
spond to the merger of  (say) the diffracting capabil i ty 
of  Fig. 5 with the 'window'  of  Fig. 6. For this combina-  
tion, the results are shown in Fig. 7. 

If the source cannot  be visualized as effectively at 
infinity but is at some more realistic distance then the 
wavelength band  associated with M .  and M_ will be 
displaced,  e.g. for M+ from AA+2- Ao to (say) A ) t + l  - -  

AA_I with a corresponding change for M_ of  AA_2- 
Ao to AA_~-AA+I. This would cut further into the 
shapes in Fig. 7 and truncate the areas further (see 
also Stevenson, 1988). 

D i s c u s s i o n  

The present work constitutes a re-examinat ion of  the 
interactions of  the various components  of  the system 
s o u r c e / m o n o c h r o m a t o r  crys ta l /specimen crystal 
which is based on the very minimum of assumptions  

C = O0 -025 -050 -075 ,% -100 

z I ~ o 1 "  

= -125  -150 -175 

J 

~200 

Fig. 6. Demonstration of the variation of shape where the limiting 
feature is the source size. Here the source is truncated so that 
only those beams ±fit~2 on either side of parallelism to the 
central beam can excite diffraction. In the case shown, the mosaic 
spread of M is assumed large - as in Fig. 4. 

¢= O0 -ff25 ~ -0- SO . ~ - 0 ~  

: '  - 2  ; 

' ' ', A 2 

l~" = - } 0  ~ - 1"2S -1'50 

Fig. 7. Combination of the diffracting capability associated with 
Fig. 5 with the source 'window' illustrated in Fig. 6 leads to the 
shapes in this figure. 
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and is more detailed than that given in M85. The 
contributions from each component distribution are 
identified i n / t o , / t 2 0  t°~ space and so the shape, and 
the intensity distribution, appropriate to film observa- 
tion or to linear position-sensitive detectors (without 
conversion to reciprocal space) can be deduced from 
a knowledge of the individual distributions. Con- 
versely, from a survey of selected reflections spanning 
the range of t, one can deduce experimental param- 
eters for the individual distributions, particularly 
from reflections at special values of t, such as t = 
-0.50 and -1.0. 

Comparison of the shapes derived from the theo- 
retical model treated in the present paper with those 
presented in M85 shows changes of emphasis. Certain 
features are common. Thus, the locus in / to , / t20  (°~ 
space for any given wavelength component h,, lies at 
45 ° to bo th / to  and/ t  20 (°~ axes. The intensity distribu- 
tion along the locus, which was designated tr//xM in 
M85, corresponds in fact to a secondary manifestation 
of the mosaic distribution of the monochromator 
crystal. The primary manifestation of the mosaic 
spread at a given point on M has a locus at a slope 
of arctan (1/2) to the +/t20 ~°) axis (see Fig. 4). The 
distribution along the locus for An involves the change 
in the mosaic distribution along M. If the mosaic 
distribution is the same at all points of M then the 
distribution along h,, is the same as the primary 
manifestation, i.e. triangular, as assumed here. 

The primary manifestation of the source distribu- 
tion corresponds to the distribution along the locus 
o f / t  = 0 ° which is also the locus of h from /th-2 to 
/th+2. In the earlier model in M85, this was referred 
to as the locus of h; that nomination arose because 
/t =0 ° corresponded to the reference state of zero 
mosaic spread and thus focused attention on the 
variation in respect of h. 

When one examines the situation where the mosaic 
spread is fairly wide, as in Fig. 4, focusing (say) on 
/th_, and /th+~, then one observes that these com- 
ponents are related symmetrically about the origin. 
Thus, for example, for the case where t -- -1 .0  in Fig. 
4, the intensity o f / th - i  runs from zero (in the region 
of negative Ao) to maximum intensity and down to 

~= 0-0 -0-5 -1"0 -1.5 -2'0 

Fig. 8. In the case of the to/20 scan mode, i.e. s = 2, the changes 
in shape in zlto, A2O t2~ space are shown for t = 0 to -2 .0  in steps 
of -0.50. 

half maximum (in the region of positive Ao). By 
contrast, the intensity of AA+I starts from half 
maximum (in the region of negagive Ao), goes to 
maximum intensity and down to zero (in the region 
of positive Aw). In the earlier model in M85, 
the distributions would have been interpreted as 
identical. 

By inspection of the various diagrams in Fig. 4, 
one can see that the comparative distributions for 
AA_! and AA+~ depend on t a n d  on the magnitude 
of the separation of / th_ ,  and / th  + 1. 

The feature which is distinguished in this analysis 
is the continual and progressive variation of the band 
of wavelengths which is diffracted as the specimen 
crystal rotates in Ao through the Bragg reflection. 

While the box shapes of Bragg reflections deduced 
in the present work can, depending on the size of the 
experimental parameters, differ from those deduced 
by the approach taken in M85, the differences are 
less evident when the distribution functions are 
rounded, e.g. Gaussians. However, for accuracy of 
measurement of integrated intensity which depends 
on proper truncation or for the explicit examination 
of individual reflections in detail (e.g. Iida & Kohra, 
1979; Wilkins, 1983) it is advisable to be able to 
identify how the various components contribute to 
specific parts of the reflection. 

In this text, no mention has been made of the 
mosaic spread of the specimen crystal. The locus of 
this component lies parallel to the / to axis in 
/to, A20/°) space and is therefore treated as in the 
non-monochromator case (e.g. Mathieson, 1982). 

Discussion of the shape of Bragg reflections has 
been restricted to Ao,/ t20 (°). When other scan modes 
(s ~ 0) are invoked, one can readily deduce how the 
shape changes. See Fig. 8 for the case of s = 2 (which 
refers to axes / to  and A20 (2)) and Mathieson (1985c), 
which was, however, based on the earlier modelling 
in M85. As is evident in this case, for profile measure- 
ment, a fixed aperture in front of the detector is 
appropriate for all settings of 0c. 

l would like to express my appreciation of valuable 
discussions with Dr A. W. Stevenson who has 
developed an alternative but related approach to 
deducing the 'shapes' of Bragg reflections, one which 
is more suited for computer applications. He intends 
to treat this elsewhere. 
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Abstract 

The correction method for weak diffraction of Bethe 
[Ann. Phys. (Leipzig) (1928), 87, 55-129] is applied 
to dynamical calculation of reflection high-energy 
electron diffraction (RHEED) intensities from gen- 
eral surfaces based on a multi-slice method. For high- 
step-density surfaces, it is shown that the corrected 
surface potential (Bethe potential) depends on the 
incident direction of electrons for step directions. 
Furthermore it is shown that the Bethe potential is 
approximately proportional to the coverage of adsor- 
bed atoms or of terraces of high-step-density surfaces. 
For the RHEED intensity from stepped surfaces, the 
intensity oscillation during molecular beam epitaxial 
growth is discussed. An appropriate calculational for- 
mula for reconstructed surfaces is also obtained. 

1. Introduction 

Practical methods of reflection high-energy electron 
diffraction (RHEED) intensity calculation were pro- 
posed by several theoretical studies (Masud & 
Pendry, 1976; Maksym & Beeby, 1981; Ichimiya, 
1983; Peng & Cowley, 1986). These methods are 
appropriate to perfect crystal surfaces, but most of 
the methods are not available for imperfect surfaces. 
The first theoretical formalism for imperfect surfaces 
was presented with a perturbation method by Beeby 
(1979). Peng & Cowley (1986) proposed a new 
method for calculating RHEED intensities which 
would allow the calculation of intensities from imper- 
fect surfaces. Electron diffraction intensity distribu- 
tions from imperfect surfaces were interpreted using 
kinematic diffraction theory by several authors 
(Matysik, 1974; Henzler, 1977; Holloway & Beeby, 
1978; Holloway, 1979; Van Hove, Lent, Pukite & 
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Cohen, 1983; Lent & Cohen, 1984; Pimbly & Lu, 
1985; Pukite, Lent & Cohen, 1985). Recently some 
theoretical approaches were proposed to interpret 
RHEED intensity oscillations (Van Hove, Lent, 
Pukite & Cohen, 1983; Kawamura, Maksym & Iijima, 
1984; Kawamura & Maksym, 1985; Ichimiya, 1987). 
In a previous paper (Ichimiya, 1987) RHEED 
intensities from a surface with low step densities were 
obtained analytically from Kirchhoff's diffraction 
theory. From the calculations it was shown that 
integrated intensities of RHEED scarcely depend on 
the step distributions and terrace coverage, but the 
intensities on reciprocal rods depend sensitively on 
these factors. Kawamura & Maksym (1985) have 
shown that the oscillation property of RHEED 
intensities during molecular beam epitaxial (MBE) 
growth depends on crystal orientation and the step 
directions for the incident beam because of dynamic 
diffraction effects. In their calculation dynamic 
diffraction as high density and periodic distribution 
of steps was taken into consideration. 

In the present work Bethe's correction method 
(Bethe, 1928; Ichikawa & Hayakawa, 1977) for weak 
beams in the dynamical theory of electron diffraction 
was applied to calculation of RHEED intensities from 
general surfaces such as stepped, reconstructed, 
distorted or adsorbed surfaces based on the multi- 
slice method (Ichimiya, 1983). 

2. Bethe's correction for general surfaces 

According to the multi-slice method of RHEED 
dynamical theory (lchimiya, 1983), the Schr6dinger 
equation at the jth slice parallel to the surface is 
expressed by a two-dimensional (2D) position vector 
r and a 2D wave vector ko, which are parallel to the 
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